

創變智造新未來

台達機器視覺系統 DMV 系列 檢測應用

目錄

電子	3	
PCB 板定位	3	
風扇 C 型扣環安裝檢測	5	
馬達磁鐵塗膠檢測	7	
SMT 材料方向檢測	9	
電阻雷雕檢測	11	
線圈角度定位	13	
轉子定位	15	
玻璃鋅片黏合對位檢測	17	
半導體	19	
晶片定位檢測	19	
太陽能板破片檢測	21	
手機面板玻璃定位	23	
半導體雷雕字元檢測	25	
工具機	27	
球窩間距量測	27	
螺絲導角 - R角檢測	29	
寶特瓶蓋、標籤與液面高度檢查	31	
鑰匙表面壓印文數字檢查	33	
SMT 設備吸嘴阻塞檢測	19	
工件攻牙檢測	20	
端子台內鐵件檢測	21	
金屬工件品質檢測	23	
汽車	41	
汽車空調按鈕圖像檢測	41	
汽車電阻值燒錄定位檢測	43	
鍍鉻飾條墊片檢測	45	
汽車排氣管檢測	47	

橡塑膠	49
塑膠瓶蓋定位 橡皮墊圈檢測 塑膠件螺絲鎖附檢測 塑膠瓶蓋與墊圈檢測	49 51 53 55
包裝	57
包裝條碼檢測 咖啡濾網檢測 面膜外盒包裝檢測 保養品瓶罐噴嘴檢測	57 59 61 63
印刷	65
印刷鋼板油墨量檢測 印刷薄膜刮傷檢測 鐵件印刷品質檢測	65 67 69
	71
藥瓶到期日確認 藥丸品質檢測 藥劑包裝標籤定位檢測	71 73 75
其它	77
太陽能模組焊點位置偵測 金屬件鉚釘檢測 馬克磁磚正反面檢測 鐵件缺口方向檢測	77 79 81 83

檢測應用說明

PCB 板定位

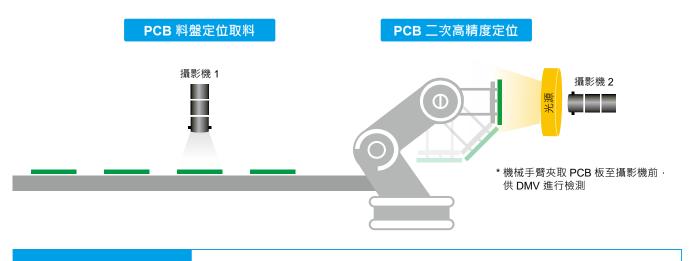
利用雙攝影機進行大範圍與高精度的 PCB 板定位檢測

設備選	田	口立注
政	HJ	以 女农

主機	DMV1000(亦適用 DMV2000)		
攝影機 1	DMV-CD80GS	攝影機 2	DMV-CD80GS
鏡頭	12mm 焦段	鏡頭	12 mm 焦段
光源	背光	光源	正面 6736 白色環形光
安裝距離	760 mm	安裝距離	90 mm
FOV	300 mm x 225 mm	FOV	40 mm x 30 mm

【檢測要點】

透過第一與第二台攝影機進行高精度 PCB 板定位檢測:


- 攝影機 1 先使用【11 點學習】功能進行座標導正後‧再經由【邊形比對】定位結果導引機械手臂吸取料盒中 PCB 板
- 攝影機 2 利用 PCB 板印刷電路執行二次【邊形比對】以取得 X、Y、Θ 的細微偏移結果補償值

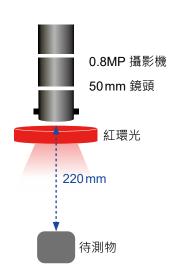
- 第一台攝影機可於 300 x 225 mm 的大視野範圍內 · 同時定位 10 片 PCB 板座標 · 檢測時間與定位精度可分別維持約在 500 ms 與 2 mm 以內(本圖示中以 5 片 PCB 板表示)
- 第二台攝影機於 40 x 30 mm 的小視野範圍內執 行第二次定位,檢測時間與定位精度可分別維持 約 300 ms 與 0.1 mm 以內

【動作流程】

- 第一台攝影機進行 PCB 板定位,機械手臂再根據定位結果吸取 PCB 板
- 機械手臂將吸取的 PCB 板移至第二台攝影機進行高精度定位,再將 PCB 板放置電測機中

導入 DMV 後的優點

利用雙攝影機分別執行大視野和小視野的定位·可實現大區域取片及高精度定位的 需求



檢測應用說明

風扇 C 型扣環安裝檢測

利用 DMV 系統檢測風扇中的 C 型扣環是否正確安裝

設備選用及安裝	
主機	DMV1000(亦適用 DMV2000)
攝影機	DMV-CD80GS
鏡頭	50 mm 焦段
光源	紅色環光
安裝距離	220 mm
FOV	16mmx12mm

【檢測工具】

環狀框選欲檢測的範圍,再利用【邊緣寬度】功能進行檢測

【檢測要點】

使用【邊緣寬度】功能檢測出 C 型扣環的 2 個邊緣·並換算出扣環的角度;當角度過大時·可判定為安裝異常。當【邊緣寬度】功能顯示的角度差為 0 時·可判定風扇無安裝扣環

• 2 個邊緣的角度差為 65.14 · 顯示扣環正確安裝 · 判定 OK

• 2 個邊緣的角度差為 81.88 · 顯示扣環安裝異常 · 判定 NG

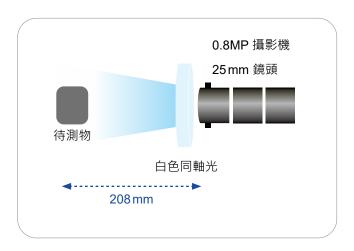
2 個邊緣的角度差為 0 · 顯示無安裝扣環 · 判定 NG

【動作流程】

C型扣環組裝至風扇上之後·DMV系統會進行檢測;若檢測結果 OK 則續流·若 NG 則退出

導入 DMV 後的優點

可滿足產線組裝後自動檢測的需求

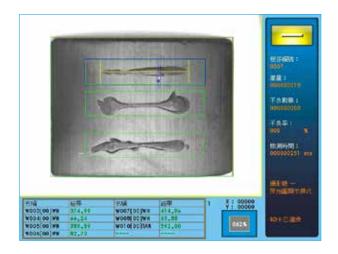


檢測應用說明

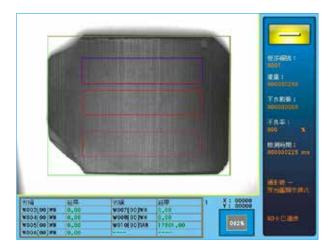
馬達磁鐵塗膠檢測

利用 DMV 系統檢測馬達磁鐵是否有缺角,以及上膠狀況

設備選用及安裝	
主機	DMV1000(亦適用 DMV2000)
攝影機	DMV-CD80GS
鏡頭	25mm 焦段
光源	白色外同軸光
安裝距離	208 mm
FOV	40 mm x 30 mm


【檢測工具】

利用【面積】功能判定磁鐵是否有缺角,再使用【寬度追蹤】功能檢測有無上膠及測量膠長


【檢測要點】

光源需凸顯塗膠的成像對比度

膠長的測量結果如下,由上至下的膠長分別是 374、389、414

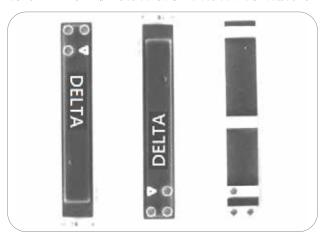
• 若無上膠‧則找不到任何邊緣‧膠長的測量結果 為 0;若磁鐵有缺角‧則 DMV 系統於物件周邊顯 示較多白色面積

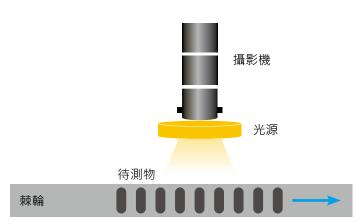
【動作流程】

利用 DMV 系統檢測磁鐵·若有缺角則退出·若無缺角則進行上膠。上膠完成後·再檢測有無上膠及測量膠長·若異常則退出·正常則進行後續組裝

導入 DMV 後的優點

滿足產線加工件自動檢測的需求





檢測應用說明

SMT 材料方向檢測

利用 DMV 系統檢測材料方向,當材料顛倒或翻轉時,控制器發出警報

設備選用及安裝	
主機	DMV1000(亦適用 DMV2000)
攝影機	DMV-CD80GS
鏡頭	12 mm 焦段
光源	75/46 低角度環形光源
安裝距離	90 mm
FOV	40 mm x 30 mm

【檢測工具】

利用【邊形比對】功能定位材料上「DEL」的印刷字樣

【檢測要點】

材料上「DEL」字樣為黑底白字·輪廓對比非常清晰·故使用【邊形比對】功能可獲得非常穩定的檢測效果

- 檢測速度約在 150 ms 以內
- 材料方向正確時,其比對相似度可達 98%。材料方向不正確時,相似度會低於 60% 以下,DMV 系統可根據相似度差異穩定檢測

方向正確 OK

方向相反 NG

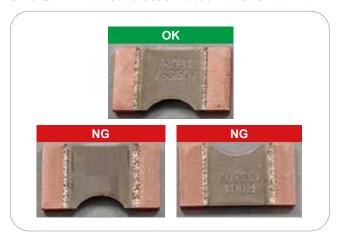
反面 NG

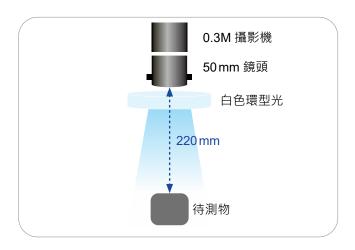
【動作流程】

採用步進馬達帶動棘輪 SMT 料帶孔,每移動一個料帶孔即輸送一顆材料至攝影機下方。當檢測出不良品時,機 台會暫停運作,等待作業人員手動排除不良品

導入 DMV 後的優點

應用 DMV 系統的【邊形比對】功能,即可達到高速且穩定的檢測效果



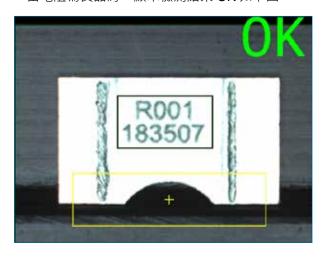


檢測應用說明

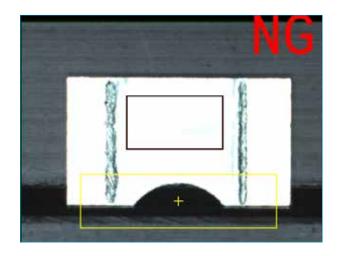
電阻雷雕檢測

檢測電阻上是否有雷雕內容,以及送料方向是否正確

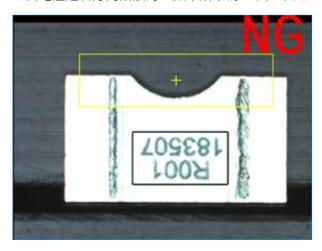
設備選用及安裝	
主機	DMV2000
攝影機	DMV-CM30GCL
鏡頭	50 mm 焦段
光源	白色環型光
安裝距離	220 mm
FOV	18 mm x 13.5 mm


【檢測工具】

- 使用【形狀】功能檢測電阻的位置
- 使用【面積】功能確認有無雷雕內容


【檢測要點】

預先設定【形狀】功能的角度限制以及【面積】功能的面積限制,作為檢測和不良品的判斷基準


- 檢測時間約 45 ms
- 當電阻為良品時,顯示檢測結果 OK 如下圖

• 當電阻沒有雷雕時‧檢測黑色面積過小‧判定為 不良品並顯示結果 NG 如下圖

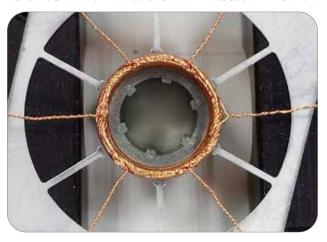
• 當電阻送料方向錯誤時,顯示結果為 NG 如下圖

【動作流程】

將待測電阻移至攝影機下方進行檢測·若視覺系統判定為不良品·則馬上進行吹氣排出·避免流至後續製程影響品質 (送料速度約為 10 pcs/sec.)

導入 DMV 後的優點

滿足客戶快速檢測電阻的需求,可應用於產線的焊接、雷雕、檢測等製程



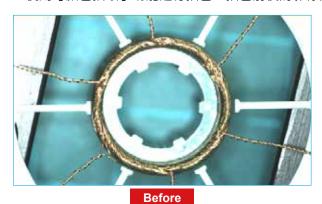


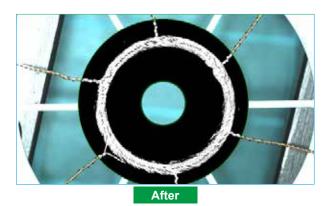
檢測應用說明

線圈角度定位

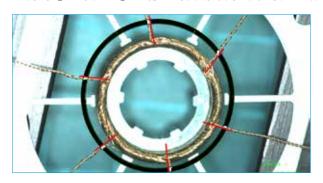
利用視覺確認線圈出線的角度,並以機構修正角度以進行後續的點焊製程

設備選用及安裝	
主機	DMV2000
攝影機	DMV-CM2MCCL
鏡頭	50 mm 焦段
光源	白色環型光
安裝距離	200 mm
FOV	45 mm x 22.5 mm


【檢測工具】


- 使用【顏色抽取】功能將銅線的顏色抽出
- 使用【邊緣位置】功能量測各銅線的出線角度

【檢測要點】


利用【顏色抽取】功能抽取銅線的顏色,以取得比較穩定的檢測影像

- 檢測時間約 200ms
- 使用【顏色抽取】功能進行抽色,抽色前後的影像如下圖

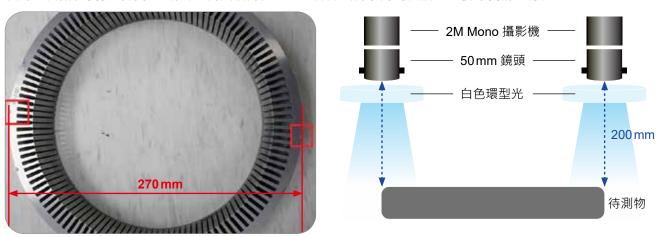
• 利用【邊緣位置】功能量測各銅線的出線角度,結果如下圖

【動作流程】

將線圈移載至矽鋼片中心·觸發視覺系統進行出線角度量測並得到 6 個出線角度·利用機構轉動矽鋼片至銅線出線端並進行點焊

導入 DMV 後的優點

傳統製程使用治具進行線圈及矽鋼片的點焊·有治具耗損、浪費成本的問題;使用 DMV 機器視覺系統進行檢測·可節省治具維護成本,同時提高產品良率

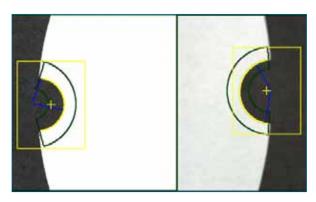


檢測應用說明

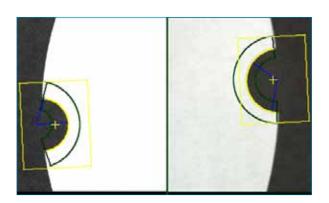
轉子定位

使用 2 台攝影機檢測轉子矽鋼片 2 側凹槽的位置,並計算出轉子的角度偏差,引導機構進行修正

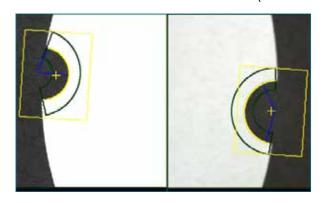
設備選用及安裝	
主機	DMV2000
攝影機	DMV-CM2MGCx2
鏡頭	50 mm 焦段 x 2
光源	白色環型光x2
安裝距離	200 mm
FOV	45 mm x 22.5 mm


【檢測工具】

- 使用【形狀】功能檢測2個凹槽的位置
- 使用【邊緣追蹤】功能定位2個凹槽的圓心座標
- 透過 2 個凹槽圓心的座標,搭配【Panel_Angle 函式】計算整體轉子的偏移角度


【檢測要點】

Panel Angle 函式需要輸入機構參數,包含 2 台攝影機安裝的 X 軸向、Y 軸向距離,所以試機前需要先確認上述機構參數的正確性


- 檢測時間約 200 ms
- 當轉子偏移角度為 0 時,檢測結果如下圖

當轉子逆時針偏移時,檢測結果如下圖 (偏移角度約為 2.37 度)

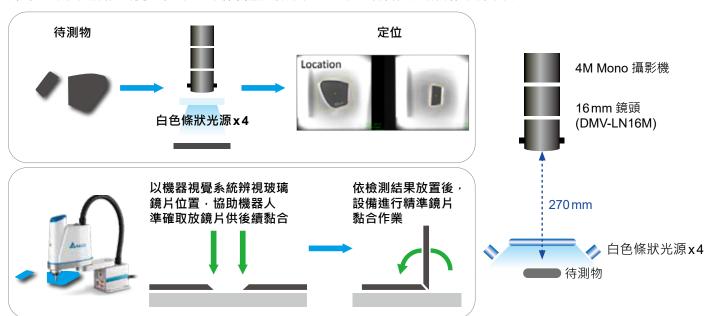
• 當轉子順時針偏移時,檢測結果如下圖(偏移角度約為-3.49度)

【動作流程】

轉子送料至檢測位置·並利用機構進行 $X \times Y$ 座標定位後·觸發視覺進行角度的偏移檢測;取得轉子的偏移角度之後·再利用 DD 馬達修正轉子角度·並進行銅線安裝

導入 DMV 後的優點

傳統方式是以人工將轉子放置於治具中定位;採用機器視覺系統進行轉子角度 偏移量計算,可節省人工以及治具維護的成本

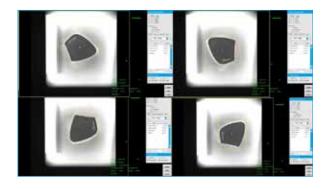


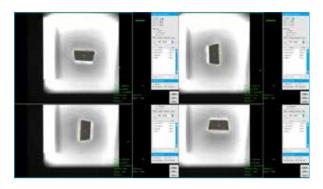
檢測應用說明

玻璃鋅片黏合對位檢測

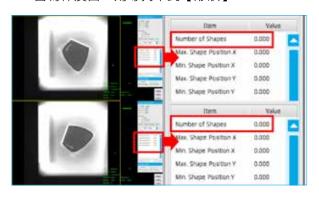
針對鏡片形狀輪廓進行檢測定位,確保機器人抓取位置正確、以及後續貼合作業精確度

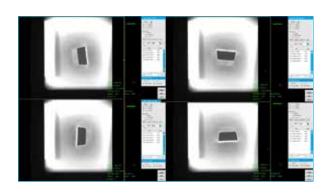
設備選用及安裝	
主機	DMV2000
攝影機	DMV-CM4MGCL
鏡頭	16mm 焦段
光源	白色條狀光源x4
安裝距離	270 mm
FOV	190 mm x 190 mm


【檢測工具】


• 利用【形狀】功能尋找物件座標與角度,可透過自訂旋轉中心搭配機器人進行四點學習,確保抓取點都是固定的

【檢測要點】


需要確保正確光源角度,避免鏡片切角反光讓形狀邊緣模糊,協助機器人準確取放輸送帶上之物件


- 可以正確檢測物件正反面或異常情況,一次定位檢測時間約在 300ms 以內,光學精度約為 0.092 mm/pixel
- 由於每個物件入料的位置並不固定,所以透過【形狀】功能抓取欲黏合之兩個物件的 X、Y 座標與轉角數值

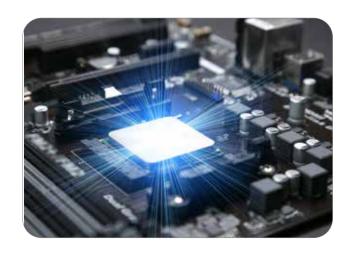
• 當物件反面,則尋找不到【形狀】

【動作流程】

玻璃鏡片入料後,上位控制器會於固定時間進行觸發以檢查工件位置狀態,再由機器人夾取至貼合區,進行 塗膠並旋轉鏡片完成貼合;當出現不良品時輸出 NG 訊號告知停機並由人員移除不良品

導入 DMV 後的優點

傳統使用人力進行鏡片貼合·可能因長時間作業疲勞產生誤檢、或人工操作精度不佳·導致產品品質不良;導入 DMV 系列機器視覺系統後·不僅解決人工 誤檢的問題·亦能進一步提升貼合精度·滿足客戶需求

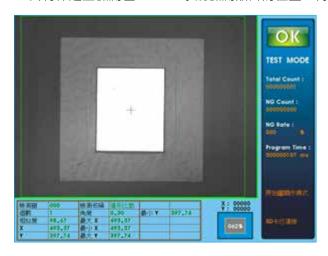


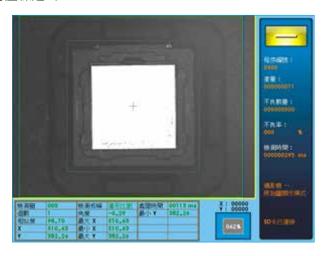

半導體

檢測應用說明

晶片定位檢測

設備選用及安裝	
主機	DMV1000(亦適用 DMV2000)
攝影機	DMV-CD80GS
鏡頭	50 焦段
光源	紅色外同軸光源
安裝距離	約 210 mm
FOV	約 17 mm x 12.8 mm


【檢測工具】


使用【邊形比對】功能,測量物件座標及偏移角度

【檢測要點】

光源須能夠凸顯出晶片表面的輪廓·以提升 DMV 系統定位比對的精確度

- 檢測速度約在 300 ms 以內
- 當物件送至檢測區,DMV 系統檢測晶片的位置,再將座標送出

【動作流程】

- 當工件進入檢測區後,可程式控制器下達觸發指令,告知 DMV 系統拍照
- DMV 系統運行時·每 200 ms 會將檢查結果透過通訊傳送至可程式控制器·讓控制器根據數據控制機器手臂 進行取放

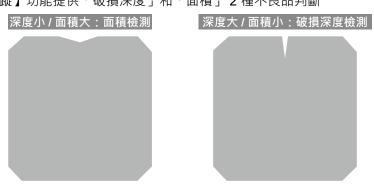
導入 DMV 後的優點

該應用為設備製造商的客製化需求,實際導入應用後,為業主實現減少人力、提升 產線產能的目標,同時減少人員疏失導致商品損壞的情況

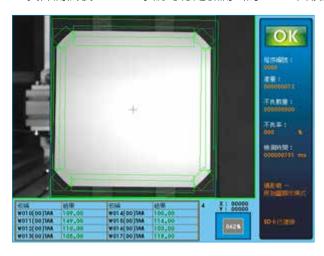
半導體

檢測應用說明

太陽能板破片檢測

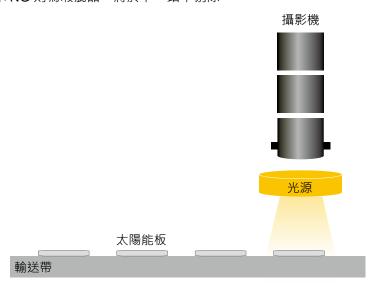

設備選用及安裝	
主機	DMV1000(亦適用 DMV2000)
攝影機	DMV-CD80GS
鏡頭	8 mm 焦段
光源	150 mm 60 度紅色環形光 + 擴散片
安裝距離	約 400 mm
FOV	約 240 mm x 180 mm

【檢測工具】


- 採用【邊形比對】功能進行太陽能板定位
- 根據定位結果,使用8個【邊緣追蹤】功能測量太陽能板邊緣是否破損

【檢測要點】

【邊緣追蹤】功能提供「破損深度」和「面積」2種不良品判斷



- 檢測速度約在800 ms 以內
- 實際測試後, DMV 系統可穩定檢測出約 1mm 面積的破損,符合客戶針對 2mm 以內破損檢測的需求

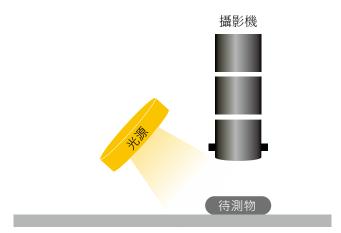
【動作流程】

- 輸送帶運送太陽能板至測試區
- 當太陽能板到達攝影機下方時,上位控制器觸發攝影機取像檢測。DMV 系統約 800 ms 內回應檢測結果為OK/NG,若結果顯示 NG 則為瑕疵品,將於下一站中剔除

導入 DMV 後的優點

人工檢測破片容易出現漏檢的情況·透過 DMV 系列的邊緣追蹤功能·可穩定正確、快速地檢測檢出破損·提升產能及良率

半導體



檢測應用說明

手機面板玻璃定位

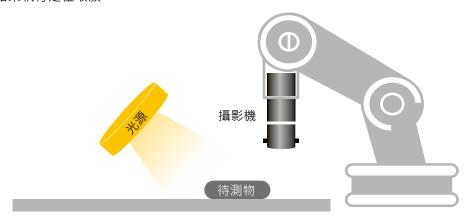
透過 DMV 系統定位手機面板玻璃 (誤差 1 mm 以內) · 再由機器手臂夾取物件

設備選用及安裝	
主機	DMV1000(亦適用 DMV2000)
攝影機	DMV-CD80GS
鏡頭	8 mm 焦段
光源	側面條狀光打光
安裝距離	670 mm
FOV	400 mm x 300 mm

【檢測工具】

採用【邊形比對】功能進行定位

【檢測要點】


- 搭配機器手臂執行檢測時,須執行四點校正功能,將視覺座標轉換為機械手臂座標
- 光源需均勻才能夠實現最佳檢測效果

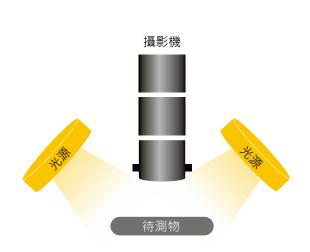
- 檢測速度約在 700 ms 以內
- 四面方向須均勻打光,定位精度才可控制在 1 mm 以內

【動作流程】

輸送帶移入面板玻璃後·觸發 DMV 系統拍照取像·並將視覺座標轉換為手臂座標。定位資料傳送至機械手臂後·機械手臂依此結果執行定位取放

導入 DMV 後的優點

機械手臂已是當前市場趨勢,搭配 DMV 系統可達到無人自動化的需求


半導體

檢測應用說明

半導體雷雕字元檢測

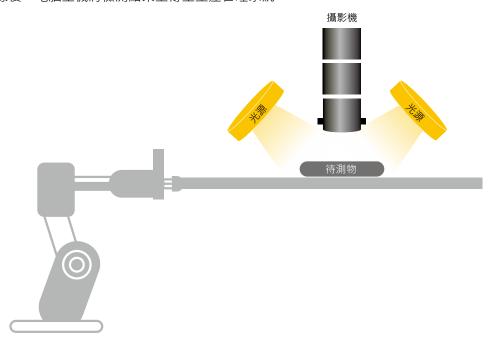
設	備 選用

主機	DMV1000(亦適用 DMV2000)
攝影機	DMV-CD80GS
鏡頭	25mm 焦段
光源	100 mm 白色條狀光 + 擴散片 x 2
安裝距離	約 300 mm
FOV	約 60 mm x 45 mm

【檢測工具】

- 採用【邊形比對】功能進行晶圓承載盤定位
- 根據定位結果,使用【字元辨識】功能檢測字元

【檢測要點】


- 光源須在最佳對比的狀態下,方能清楚顯示雷射雕刻字元
- 設定取像環境後,在字庫中依序加入須檢驗的字元,再配合 DMV 系列【字元辨識】功能進行檢測

- 檢測速度約在 800 ms 以內
- 每次最多可同時檢測 2 行字元 (每行各 22 字元)

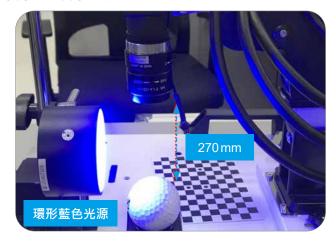
【動作流程】

- 機械手臂將待測物送至攝影機下方
- 攝影機取像後,電腦主機將檢測結果上傳至生產管理系統

導入 DMV 後的優點

機器視覺系統可穩定辨識最多 2 行字元(每行各 22 字元)·快速判讀晶元貨號· 幫助客戶掌握生產期程

工具機



檢測應用說明

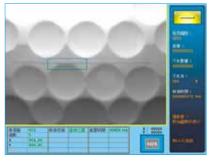
球窩間距量測

量測高爾夫球球窩間距,提供的樣品有正常、間距大、間距小的三種不同型式

設備選用及安裝	
主機	DMV1000(亦適用 DMV2000)
攝影機	DMV-CD80GS
鏡頭	25mm 焦段 + 5mm 延伸環
光源	環形藍色光源(含擴散板)
安裝距離	70 mm
FOV	14.6 mm x 11 mm

【檢測工具】

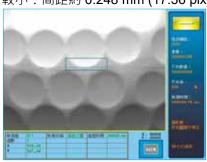
- 使用【邊形比對】功能先進行定位
- 使用兩個【邊緣位置】功能來檢測上下球窩的邊線

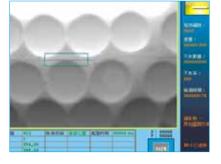

【檢測要點】

在高速旋轉 (1,350RPM) 的動態下進行球體檢測,所以快門時間要很短,才不會造成影像模糊

以 432 型高爾夫球為例,分別量測上球窩下邊緣位置和下球窩上邊緣位置後,經過計算得到球窩間距:

- 光學精度部分約為 0.0143mm/pixel,單次檢測時間大約在 200ms 以內
- 正常品:間距約 0.554 mm (38.72 pixel x 0.0143 mm/pixel)




• 較大:間距約 0.916 mm (64.08 pixel x 0.0143 mm/pixel)

• 較小: 間距約 0.248 mm (17.36 pixel x 0.0143 mm/pixel)

【動作流程】

高爾夫球在輸送移動過程中不斷轉動·移至檢測位置 (磨邊機) 時·即會量測球窩間距·並透過預設的上/下限值·判別是否為良品

導入 DMV 後的優點

傳統製程完成裝袋後·由人工進行抽檢·耗時耗力並且無法確保品質一致;導入機器視覺檢測系統後·可於製程完成時 100% 檢測每個成品·確保品質且不需再花費時間和人力進行抽檢

工具機

檢測應用說明

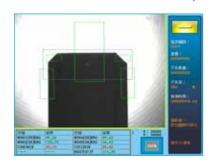
螺絲導角/R 角檢測

量測不同螺絲的導角和 R 角值

≐几,	備選.	田及	3 🕏	井士
$\Box \nabla$	四月及天	πл	\mathbf{x}	AV.

主機	DMV1000(亦適用 DMV2000)
攝影機	DMV-CD80GS
鏡頭	35mm 焦段
光源	紅色平行光源
安裝距離	150 mm
FOV	20 mm x 15 mm

【檢測工具】

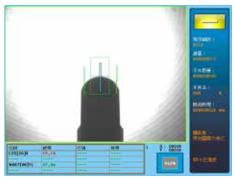

- 先使用【邊形比對】功能進行螺絲的初始定位
- 定位完成後,分別用2個【邊緣角度】功能量測是否有導角
- 分別利用 3 個【邊緣位置】功能量測半圓形中的 3 點座標 · 即可透過 DMV 系列的計算功能 · 量測出圓形的 R 角值

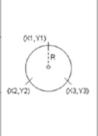
【檢測要點】

R 角量測精度要求高,建議使用平行光源(可避免光量現象),亦可以同時搭配平行光鏡頭使用


導角量測:

- 入料時先使用【邊形比對】進行初步定位(如下圖中的十字靶)
- 依據定位結果,使用2個【邊緣角度】功能量測左右2側的邊緣角度
- 如下圖中,左側的角度量測結果為 134.70/右側為 44.03
- 透過量測結果判定是否有導角;例如當左側量測到的角度小於 100.00 · 即可判定為無導角並顯示 NG


根據【邊形比對】初步定位,當材料旋轉 時可穩定追蹤量測到正確的導角角度


若無導角·左側角度的量測結果為 90.76 (低於 100),即可判定為不良品

R 角量測:

• 由使用 3 個【邊緣位置】功能·由上往下分別量測出 3 點座標後·再配合 R 角計算功能計算出結果·如下圖中 R 角為 19.15

			CIRCLE_X (X1,Y1,X2,Y2,X3,Y3)	
	CIRCLE_X	X coordinates of circle	CIRCLE_X	
		formed by three points	(-14.6,8.94,-11.64,4.15,-15.61,3.	
			47) = -14	
			CIRCLE_Y (X1,Y1,Y2,Y2,X3,Y3)	
	OIDOLE V	Y coordinates of circle	CIRCLE_Y	
	CIRCLE_Y	formed by three points	(-14.6,8.94,-11.64,4.15,-15.61,3.47)	
			= 6	١,
			CIRCLE_R (X1,Y1,X2,Y2,X3,Y3)	Ι,
	CIRCLE_R	Radius (R) of circle	CIRCLE_R	
		formed by three points	(-14.6,8.94,-11.64,4.15,-15.61,3.47)	
			= 3	

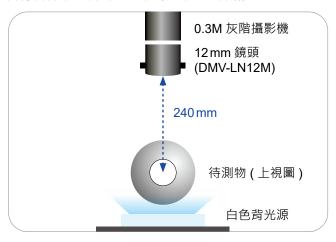
【動作流程】

螺絲入料時經過感測器·立刻觸發 DMV 機器視覺系統進行拍照檢測·並依照上述的檢測結果判定 OK 或 NG;當材料判定結果是 NG 時·系統推動氣缸將不良品推落到回收區·確保成品良率

導入 DMV 後的優點

在螺絲車削成形過程中·不易以人工方式檢測成品;導入機器視覺系統·可於車削後立即檢查並排除不良品·亦可將因刀具損壞造成的連續不良品情況回傳至上位控制器·確保產品品質·同時避免大批不良品流入市面

工具機



檢測應用說明

寶特瓶蓋、標籤與液面高度檢查

檢查礦泉水寶特瓶蓋是否蓋上、標籤是否貼上、液面高度是否符合標準,若出現異常則顯示 NG 訊號

設備選用及安裝

主機	DMV2000
攝影機	DMV-CM30GCL
鏡頭	12mm 焦段
光源	白色背光
安裝距離	240 mm
FOV	96 mm x 72 mm

【檢測工具】

- 使用【邊緣位置】功能針對瓶身位置進行檢測
- 使用【面積】功能檢查瓶蓋與標籤是否存在
- 使用【邊緣位置】功能確認液面高度

【檢測要點】

需要確保物件入料時觸發感測器的時機點誤差不能過大

 實際在產線上進行檢測時,實特瓶會由水平方向 進入檢測區,感測器觸發機器視覺系統進行拍照, 並以【邊緣位置】功能定位實特瓶位置

同樣以【面積】功能檢測瓶身標籤是否存在;如下 圖,如標籤存在,其上印刷的字樣會以一定大小的 黑色畫素呈現

 以【面積】功能檢查瓶蓋是否存在;如下圖,經濾 波之後的檢測結果,當瓶蓋存在時黑色畫素面積會 大於一定數值

液面高度部分則是以【邊緣位置】功能進行檢查
 下圖中可以看到【邊緣位置】功能正確找到液體表面的位置

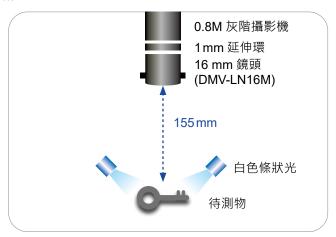
【動作流程】

寶特瓶進入檢測區並觸發感測器後·上位控制器會控制 DMV 機器視覺系統執行所有項目檢測查·當出現不良品 (NG) 時進行排除

導入 DMV 後的優點

可降低不良品流出的機會,滿足客戶產線自動檢測的需求

工具機



檢測應用說明

鑰匙表面壓印文數字檢查

檢查鑰匙上壓印的文字內容,若不正確則顯示異常 (NG) 訊號

→几/#± 沙巴	田	口力壯
設備選	Ħ.	火 女粒

主機	DMV1000(亦適用 DMV2000)
攝影機	DMV-CD80GS
鏡頭	16mm 焦段 + 1mm 延伸環
光源	白色條狀光
安裝距離	155 mm
FOV	46.5 mm x 34.9 mm

【檢測工具】

- 使用【邊形比對】功能檢測鑰匙位置
- 使用【字元辨識】功能檢查鑰匙上的壓印文字是否正確

【檢測要點】

需要確保穩定的光源,以及文字刻印有無過淺的情況

• 由於鑰匙入料的位置可能會出現些許偏移 · 因此先以【邊形比對】功能進行物件位置檢測

• 根據位置檢測結果,以【字元辨識】功能正確讀取 鑰匙上壓印文字的內容,並檢查正確性

• 鑰匙以不同角度擺放,【字元辨識】功能仍可正確讀取壓印文字內容

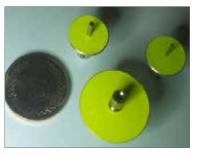
• 若文字壓印是歪的,導致變形或超出檢測範圍,檢測結果相對不穩定,或顯示辨識失敗(如下圖)

【動作流程】

金屬鑰匙送入檢測區並觸發感測器後,上位控制器會控制 DMV 機器視覺系統,檢測鑰匙表面文字,當出現不良品 (NG) 時進行排除

導入 DMV 後的優點

傳統使用大量人力檢查鑰匙文字壓印狀態與內容·可能因長時間作業疲勞產生 誤檢、或人工操作精度不佳·導致產品品質不良;導入 DMV 系列機器視覺檢測系 統後·可解決人工誤檢的問題·滿足客戶需求



工具機

檢測應用說明

SMT 設備吸嘴阻塞檢測

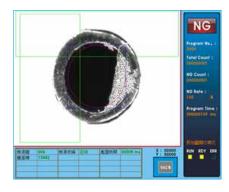
設備選用及安裝		
主機	DMV1000(亦適用 DMV2000)	
攝影機	DMV-CD80GS	
鏡頭	110 mm · 2 倍平行光鏡頭	
光源	4218 白色環光以上打光方式	
安裝距離	110 mm	

【檢測工具】

- 採用【面積】功能
- 阻塞處以白色影像呈現。透過白色像素面積 大小的檢測計算,即可判定吸嘴是否阻塞

【檢測結果】

FOV


- 檢測速度於 200 ms 以內
- 約阻塞 1/5 以上孔徑時即可穩定檢出

2.4 mm x 1.8 mm

【檢測要點】

光源的角度很重要·當光源架置於正確位置時·會將吸嘴內阻塞的髒污清楚地以白色影像顯示

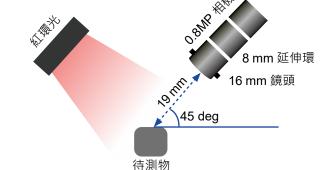
【動作流程】

- 攝影機和光源皆在正上方,並以正向打光方式取像
- 各種尺寸吸嘴的安裝固定孔皆相同。因此在檢測時,於工作台上建立一個標準 孔位,再由操作人員將受檢的吸嘴固定在上方進行檢測

導入 DMV 後的優點

由於吸嘴的尺寸很小‧不易判斷阻塞情形‧藉由視覺放大及光源強化特徵的 方式‧可達到穩定檢測的效果

工具機


檢測應用說明

工件攻牙檢測

利用 DMV 系統確認圖中的工件是否有攻牙

設備選用及安裝 主機 DMV1000 (亦適用 DMV2000) 攝影機 DMV-CD80GS 鏡頭 16 mm 焦段 + 8 mm 延伸環 光源 紅色環光 安裝距離 19 mm

10 mm x 7 mm

【檢測工具】

採用【邊緣計數】功能

【檢測要點】

鏡頭須傾斜安裝才能看見是否完成攻牙、光源也必須傾斜安裝才能對螺紋產生足夠的對比差異

FOV

【檢測結果】

當偵測到一定的邊緣數量時,可以確認工件中有攻牙

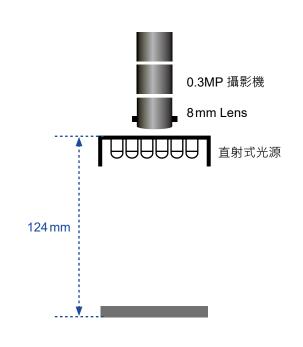
【動作流程】

將工件置放於治具上進行攻牙,完成後即進行上述的檢測

導入 DMV 後的優點

滿足工件於產線組裝後,立即自動檢測的需求

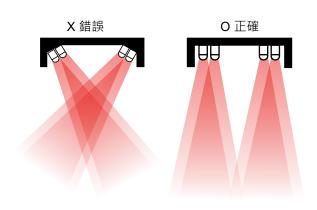
工具機



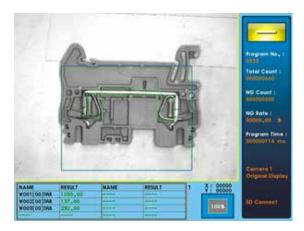
檢測應用說明

端子台內鐵件檢測

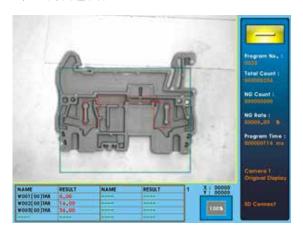
設備選用及安裝			
主機	DMV1000(亦適用 DMV2000)		
攝影機	DMV-CD30GS		
鏡頭	8mm 焦段		
光源	直射式光源		
安裝距離	124 mm		
FOV	49 mm x 35 mm		



【檢測工具】


- 利用【邊形比對】功能進行端子台定位
- 再利用多個【面積】功能,檢測鐵件是否存在

【檢測要點】


為了使鐵件發揮最大的反光程度,必須使用 90° 垂直光源

• 使用 3 個【面積】功能,當端子台內有鐵件時,可偵測到一定程度的白色面積

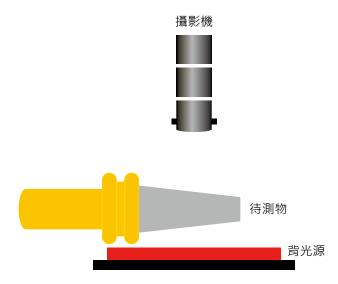
• 當鐵件不存在時‧這3個【面積】功能只能偵測出 少量的白色面積

【動作流程】

輸送帶將生產完成的端子台送至視覺檢測區進行檢測,檢測出鐵件的端子台續留,反之則退出

導入 DMV 後的優點

端子台於產線組裝後,能夠立刻進行自動檢測,滿足客戶需求


工具機

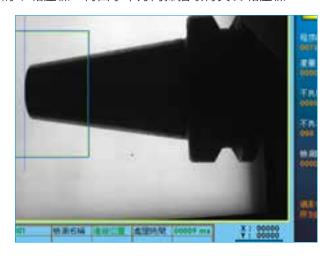
檢測應用說明

金屬工件品質檢測

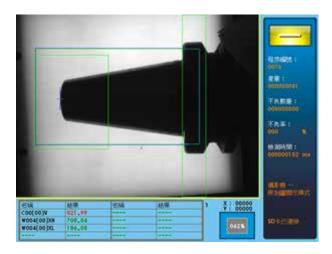
設備選用及安裝

主機	DMV1000(亦適用 DMV2000)
攝影機	DMV-CD80GS
鏡頭	8 焦段
光源	紅色背光光源
安裝距離	約 158 mm
FOV	約 100 mm x 75 mm

【檢測工具】


- 以【邊緣位置】功能,檢測金屬工件在畫面上的位置
- 接著在其相對位置上使用【邊緣追蹤】功能,檢測圓錐頂端至底端的距離

【檢測要點】


須留意攝影機架設的角度,如攝影機出現偏斜,易導致檢測出來的尺寸出現偏差

- 檢測速度約在 200 ms 以內
- 當機械手臂將金屬工件送入檢測區後,可從側面檢查金屬工件的頂端至底部的距離是否在標準之內
- 透過【邊緣位置】功能進行垂直方向掃描,取得工件的 Y 軸座標,再由水平方向掃描取得其 X 軸座標

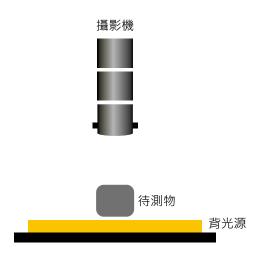
• 再以【邊緣追蹤】功能·取得錐形頂端與底端的座標位置。取得該兩項座標後·即可透過內部計算機運算出工件的距離

【動作流程】

- 當工件進入檢測區後,可程式控制器下達觸發指令,告知 DMV 系統拍照
- DMV 系統運行時·每 200 ms 會將檢查結果透過通訊傳送至可程式控制器·讓控制器根據檢查的結果進行後續工序或不良品排除

導入 DMV 後的優點

該應用為設備製造商的客製化需求,業主期望 DMV 系統可協助工件頂端至底端之 距離的標準化。實際導入後,DMV 系統可以有效降低不良品流入市場的機率


汽車

檢測應用說明

汽車空調按鈕圖像檢測

設備選用及安裝	
主機	DMV1000(亦適用 DMV2000)
攝影機	DMV-CD80GS
鏡頭	25 焦段 + 2 mm 延伸環
光源	紅色背光光源
安裝距離	約 168 mm
FOV	約 32.5 mm x 24.4 mm

【檢測工具】

- 採用【邊形比對】功能定位按鈕中圖像的位置
- 再以【面積】功能及【影像強度】功能計算人像與向下箭頭的亮點面積

【檢測要點】

• 物件需完全進入檢測區才可觸發拍照,避免導致誤判

- 檢測速度約在 200 ms
- 當物件進入檢測區後,DMV 系統拍攝汽車空調按鈕,以【邊形比對】功能取得空調按鈕中圖像的 X、Y 軸座標以及其旋轉角度,並透過【面積】功能檢查人像與箭頭是否存在多餘的亮點面積
- 當檢測出不良品時,系統發送 NG 訊號給控制器

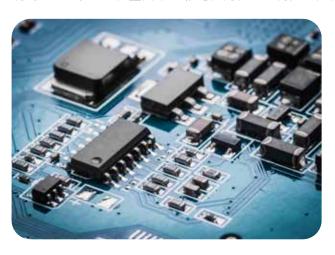
• 【面積】功能可偵測多餘的亮點面積,進而判斷是否為不良品,如下圖範例的亮點面積一共為 664 像素,已超過標準品範圍值,即可判斷為不良品

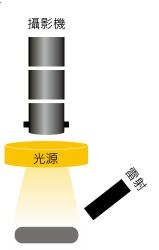
【動作流程】

- 當物件進入檢測區後,控制器下觸發告知 DMV 系統進行拍照
- DMV 系統於 200 ms 內完成檢測·並將檢查結果透過通訊送至控制器·依照檢查結果剔除不良品

導入 DMV 後的優點

針對設備製造商的客製化需求導入 DMV 系統後,可提升產能並減少不良品的產生


汽車



檢測應用說明

汽車電阻值燒錄定位檢測

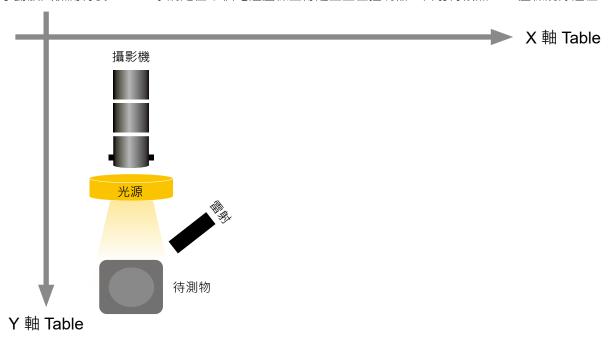
利用 DMV 系統定位畫面中 3 顆電阻的位置,再透過座標精確執行汽車電阻值燒錄

設備選用及安裝	
主機	DMV1000(亦適用 DMV2000)
攝影機	DMV-CD80GS
鏡頭	12mm 焦段
光源	6736 白色環形光源
安裝距離	160 mm
FOV	100 mm x 75 mm

【檢測工具】

採用【邊形比對】功能進行定位,再使用3個【斑點】功能找出黑色電阻的位置

【檢測要點】


利用【邊形比對】功能定位基準座標,才可準確執行雷射燒錄作業

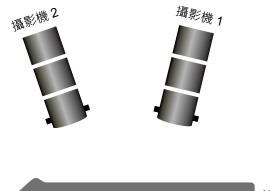
- 檢測速度大約在 500 ms 以內
- 定位精度可維持 0.5 mm 以內,滿足客戶需求

【動作流程】

• 手動放入檢測物後, DMV 系統定位 3 個電阻座標並傳送至上位控制器, 雷射再依照 X-Y 座標燒錄阻值

導入 DMV 後的優點

利用人工執行雷射燒錄容易產生偏移與品質不穩定·透過 DMV 系統進行自動化檢測,可提升加工速率、精度和產品品質穩定度


汽車

檢測應用說明

鍍鉻飾條墊片檢測

待測物

設備選用及安裝

主機	DMV1000(亦適用 DMV2000)
攝影機	DMV-CD80GS
鏡頭	8mm 焦段 x 2
光源	環境光
安裝距離	攝影機 1 和攝影機 2 皆為 600 mm
FOV	370 mm x 277 mm

【檢測工具】

- 利用 2 個【邊形比對】功能定位物件的位置
- 再以 6 個【面積】功能檢測墊片是否正確安裝完成

【檢測要點】

- 架設攝影機須注意高度,兩台攝影機各拍攝半段鍍鉻飾條上的墊片
- 由於鍍鉻飾條材質容易反光,因此打光時須盡量降低反光的情況

- 檢測速度約在 500 ms
- 可正確檢測鍍鉻飾條內的墊片數量是否缺少(黑色墊片安裝於白色墊片之上)
- 黑色墊片安裝檢測:使用【面積】功能對墊片安裝處進行檢測。如下圖所示,當黑色墊片安裝正確時,黑色 像素的面積顯示的正常數值為 1181;當缺少黑色墊片而露出底層白色的墊片,黑色像素的面積顯示為 241, 低於標準數值,DMV 系統即可檢測出異常

• 白色墊片安裝檢測: DMV 系統可透過檢測白色像素面積·判斷是否安裝白色墊片。如下圖所示·當白色墊片 正確安裝時·白色像素值面積顯示為 1030; 如移除白色墊片後·白色像素面積僅顯示為 252·DMV 系統即 可檢測出異常

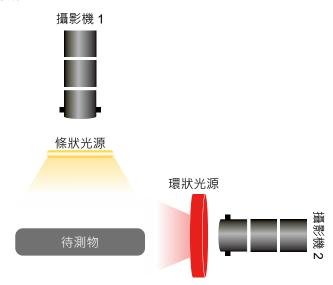
【動作流程】

- · 當組裝人員完成作業後, DMV 系統進行拍照
- DMV 系統檢測後,將結果透過 I/O 通訊傳送至控制器;若結果為 NG,則控制器觸發警報

導入 DMV 後的優點

該應用為汽車零組件生產商的客製化需求,業主需檢驗鍍鉻飾條上墊片是否有安裝不良、缺件的情況。使用 DMV 系統後,可有效減少不良品流入市面

汽車



檢測應用說明

汽車排氣管檢測

利用 DMV 系統檢測排氣管內是否裝有玻璃纖維包與側管字樣

設備選用	用及安裝

主機	DMV1000(亦適用 DMV2000)		
攝影機 1	DMV-CD80GS	攝影機 2	DMV-CD80GS
鏡頭	12 mm 焦段	鏡頭	8mm 焦段
光源	LED 條狀光 *2	光源	紅色環狀光源
安裝距離	763 mm	安裝距離	333 mm
FOV	300 mm x 225 mm	FOV	200 mm x 150 mm

【檢測工具】

- 此應用案例需使用 2 台攝影機。攝影機 1 利用【邊形比對】功能定位排氣管,再以【面積】功能確認排氣管內是否裝有玻璃纖維包
- 攝影機 2 利用【邊形比對】功能定位側管上的字元,再使用 2 個【邊形比對】功能確認排氣管側鋼印的數字 是否正確
- 利用【斑點】功能分辨兩管及三管

【檢測要點】

- 光源須確實凸顯出物件表面刻字的狀態
- 建議執行定位功能避免偏移的情況

1. 先以【邊形比對】功能進行定位

3. 攝影機 2 以【邊形比對】功能進行定位

5. 以【邊形比對】功能檢查鋼印是否印製

2. 以【面積】功能進行玻璃纖維包放置情況的檢測 (以下為有放置的情況下白色像素總面積為 14167 pixels)

4. 以【邊形比對】進行字樣的確認

【動作流程】

- 物件送至檢測區後,DMV 系統進行拍照
- DMV 系統將 OK/NG 訊號透過 I/O 送至控制器;如檢測結果為 NG·控制器發出警報

導入 DMV 後的優點

此應用為汽車零組件生產廠商的客製化需求·導入 DMV 系統後可以避免入料錯誤的情況·減少材料浪費

橡塑膠

檢測應用說明

塑膠瓶蓋定位

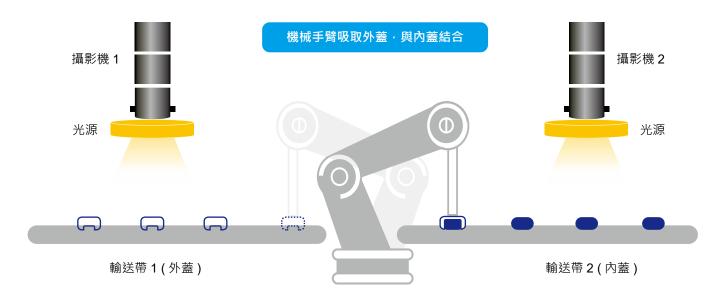
設備選用及安裝	
主機	DMV1000(亦適用 DMV2000)
攝影機	DMV-CD80GS
鏡頭	12mm 焦段
光源	採用 6736 白色環形光源正向打光
安裝距離	200 mm
FOV	80 mm x 60 mm

【檢測工具】

需使用雙攝影機進行檢測,利用【邊形比對】功能取得瓶蓋的座標及角度

【檢測要點】

需使用環形光源正向打光


- 檢測內外蓋的速度皆在 230 ms 以內
- 實際導入測試·DMV 系統定位瓶蓋內、外的角度誤差可分別控制在 1mm 與 0.5 度內·符合客戶要求的組裝 誤差值 < 2mm

【動作流程】

- 使用一台 DMV 主機控制 2 台攝影機
- 第一台攝影機定位外蓋的座標及角度後·機械手臂吸取外蓋。第二台攝影機再定位內蓋座標·SCARA機器 人根據兩台攝影機的檢測結果·將內蓋與外蓋結合·完成瓶蓋組裝

導入 DMV 後的優點

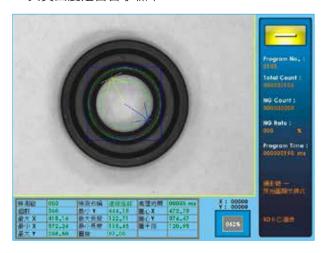
DMV 系統搭配機械手臂,可有效減少人力成本

橡塑膠

檢測應用說明

橡皮墊圈檢測

設備選用及安裝	
主機	DMV1000(亦適用 DMV2000)
攝影機	DMV-CD80GS
鏡頭	25 焦段
光源	紅色環形光源
安裝距離	約 208 mm
FOV	約 40 mm x 30 mm


【檢測工具】

- 使用 2 個【邊緣位置】功能定位墊圈外緣
- 再以 2 個【邊緣追蹤】功能分別檢測墊圈內、外緣以及整體是否合乎標準


【檢測要點】

該應用須檢測三種數值:橡皮墊圈內徑、外徑及真圓度

- 檢測速度約在 200 ms 以內
- 以【邊緣追蹤】功能掃描橡皮墊圈內徑,檢測半徑 與真圓度是否合乎標準

再以另一個【邊緣追蹤】功能掃描橡皮墊圈外徑、 檢測半徑與真圓度是否合乎標準

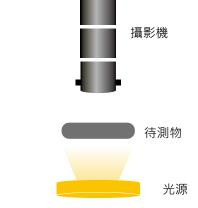
【動作流程】

- 橡皮墊圈送至檢測區後,DMV 系統進行拍照
- DMV 系統將 OK/NG 訊號透過 I/O 送至控制器;如檢測結果為 NG,控制器將發出指令剔除不良品

導入 DMV 後的優點

針對此設備製造商的客製化需求·DMV 系統可達到提升產能·且減少不良品流入市場

橡塑膠


檢測應用說明

塑膠件螺絲鎖附檢測

【檢測工具】

利用【邊緣位置】功能檢測螺絲鎖附的高度,以及採用【邊緣角度】檢測螺絲角度是否歪斜

【檢測要點】

以背光方式取得清晰的螺絲輪廓,確保量測位置和角度時可測得最精確的結果

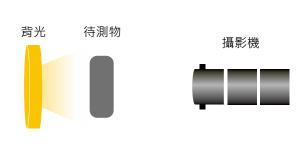
- 檢測速度約在 120 ms 以內
- 檢測螺絲鎖附的高度與角度,可確保塑膠件穩固扣於家具上

【動作流程】

旋轉盤將材料送至攝影機,配合背光的銳利輪廓,可穩定檢測螺絲鎖附的高度及角度

導入 DMV 後的優點

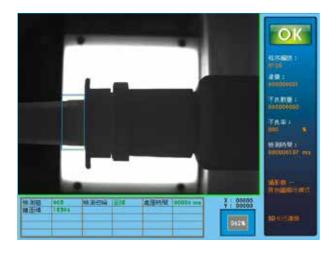
實現高速檢測,提升產能


橡塑膠

檢測應用說明

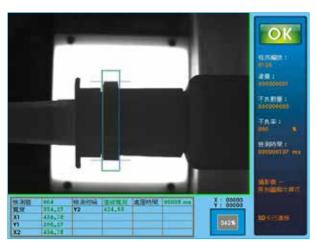
塑膠瓶蓋與墊圈檢測

設備選用及安裝	
主機	DMV1000(亦適用 DMV2000)
攝影機	DMV-CD80GS
鏡頭	12mm 焦段
光源	白色背光光源
安裝距離	約 160 mm
FOV	約 65 mm*49 mm


【檢測工具】

- 先利用 2 個【邊緣位置】功能定位座標,再採用【面積】功能確認蓋子是否存在
- 最後利用【邊緣寬度】功能檢測固定扣

【檢測要點】


利用背光光源清楚呈現瓶身的輪廓,提升測量時的準確率

- 檢測速度約在 150ms 以內;當待測物送至檢測區後,DMV 系統檢測塑膠瓶瓶蓋、固定扣是否存在
- 利用【面積】功能檢測瓶蓋,若瓶蓋存在,則黑色面積為 18000 像素以上

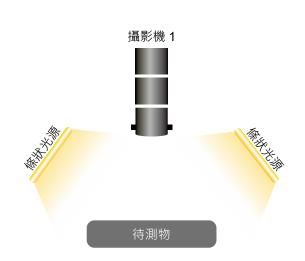
• 利用【邊緣寬度】功能檢測塑膠扣,若塑膠扣存在,則寬度會超過 250 像素

【動作流程】

- 物件送至檢測區後,DMV 系統進行拍照
- DMV 系統將 OK/NG 訊號透過 I/O 送至控制器;如檢測結果為 NG,控制器將發出指令剔除不良品

導入 DMV 後的優點

根據設備製造商的客製化需求·DMV 系統可正確檢測塑膠瓶是否安裝不良或缺件的情況,減少不良品流出


包裝

檢測應用說明

包裝條碼檢測

設備選用及安裝	
主機	DMV1000(亦適用 DMV2000)
攝影機	DMV-CD80GS
鏡頭	12mm 焦段
光源	白色條形光源 *2
安裝距離	約 210 mm
FOV	約 154 mm x 115.5 mm

【檢測工具】

以【邊形比對】功能定位「Free Scan Now」字樣,再利用【Bar Code】功能掃描物件上的一維與二維條碼

【檢測要點】

- 光源需凸顯出條碼的狀態
- 建議執行定位功能避免偏移的情況

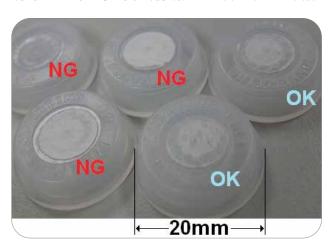
- 檢測速度約在 300 ms 以內
- 讀取條碼後,將讀取結果輸出

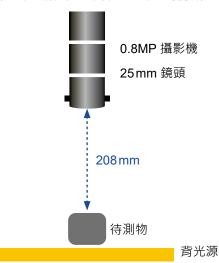
【動作流程】

- 物件送至檢測區後,DMV 系統進行拍照
- DMV 系統將 OK/NG 訊號透過 I/O 送至控制器;如檢測結果為 NG·控制器發出警報

導入 DMV 後的優點

此應用為記憶體廠商的客製化需求·導入 DMV 系統後成功大幅地降低印刷與入料錯誤的情況


包裝



檢測應用說明

咖啡濾網檢測

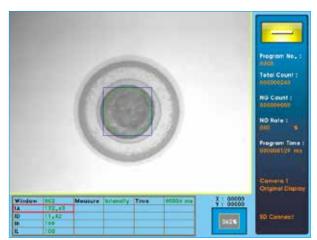
利用 DMV 系統檢測咖啡濾網數量是否正確:正常品只有一片濾網,不良品為二片以上、或沒有濾網

<u> п</u>	<i> </i> +++ >PP		7 -	-
=/-	備鼝		4 -4-	꼬
$\Box \nabla$	1788 TEE	$H \cap \Lambda$, ,	77

	DMV1000(亦適用 DMV2000)
	DIA 1000 (37.22/1) DIA 22000)
攝影機	DMV-CD80GS
鏡頭	25mm 焦段
光源	背光
安裝距離	208 mm
FOV	40 mm x 30 mm

【檢測工具】

利用【邊形比對】功能定位咖啡濾網,再利用【影像強度】功能檢測濾網數量


【檢測要點】

- 濾網的數量會影響透光性,DMV 系統可利用該特性檢測咖啡濾網
- 需使用中空式的輸送帶,讓光源由輸送帶底下以背光方式透出

• 正常品只有一片濾網,平均影像強度為 165

• 當有二片濾網時,平均影像強度則是會降至 132

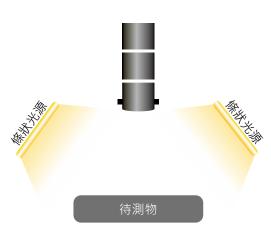
• 而當濾網完全不存在時,平均影像強度則是會上升至 220

【動作流程】

• 輸送帶將咖啡濾網送至檢測區,數量正確的濾網續流,反之則退出

導入 DMV 後的優點

滿足產線組裝後自動檢測的需求


包裝

檢測應用說明

面膜外盒包裝檢測

設備選用及安裝	
主機	DMV1000(亦適用 DMV2000)
攝影機	DMV-CD30GS
鏡頭	12 焦段
光源	白色條狀光源 *2
安裝距離	約 383.3 mm
FOV	約 153.3 mm x 115 mm

【檢測工具】

- 利用【邊形比對】功能進行定位
- 再以 2 個【面積】功能分別檢查製造日期與防偽標籤

【檢測要點】

利用 2 條光源側面打光的方式,可有效減少外盒反光造成檢測結果偏差的情況

- 檢測速度約在 150 ms 以內
- 當物件送至檢測區後,DMV 系統檢測外盒上印刷的製造日期與防偽標籤
- 利用【面積】功能檢測外盒是否標示製造日期

• 如下圖所示,外盒無標示製造日期,判定為 NG 不良品

- 利用【面積】功能檢測外盒是否標示防偽標籤 (本圖示中以條碼標籤表示)
- CONTROL 1.2

 CONTR

如下圖所示,外盒無標示防偽標籤,判定為 NG 不良品 (本圖示中以條碼標籤表示)

【動作流程】

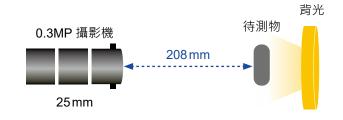
- 物件送至檢測區後, DMV 系統進行拍照
- DMV 系統將 OK/NG 訊號透過 I/O 送至控制器;如檢測結果為 NG,控制器將發出指令剔除不良品

導入 DMV 後的優點

滿足客戶需確認產品外包裝是否有漏印、漏貼的情況,有效減少不良品流入市面

包裝

檢測應用說明


保養品瓶罐噴嘴檢測

利用視覺系統確認圖中噴嘴零件的鋼珠數目是否正確

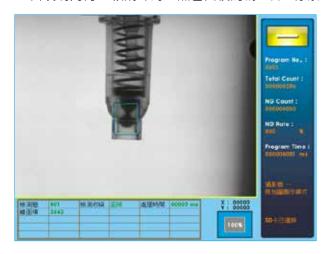
設備選用及安裝		
主機	DMV1000(亦適用 DMV2000)	
攝影機	DMV-CD30GS	
鏡頭	25mm 焦段	
光源	背光	
安裝距離	208 mm	
FOV	40 mm x 30 mm	

【檢測工具】

利用【邊形比對】功能定位,再搭配【面積】功能判定噴嘴內的鋼珠數量

【檢測要點】

利用背光方式提升鋼珠成像的對比度


• 當有一顆鋼珠時,黑色面積約為 1935 像素, 顯示為正常值

• 當噴嘴內無鋼珠時,黑色面積約為 345 像素,顯示為異常

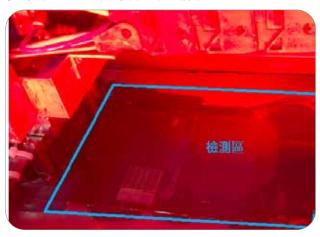
• 當噴嘴內有 2 顆鋼珠時,黑色面積約為 2662 像素,顯示為異常

【動作流程】

將待測物放置軌道上‧利用震動的方式進料‧進料後感測器觸發 DMV 系統進行檢測;若檢測出 NG 品則停機 重工‧判定 OK 則續流

導入 DMV 後的優點

滿足產線組裝後自動檢測的需求


印刷

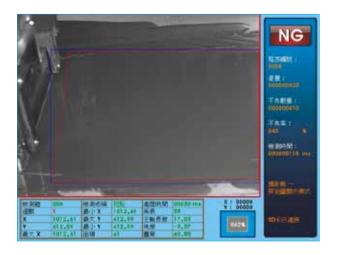
檢測應用說明

印刷鋼板油墨量檢測

檢測油墨區域是否有油墨不足情形

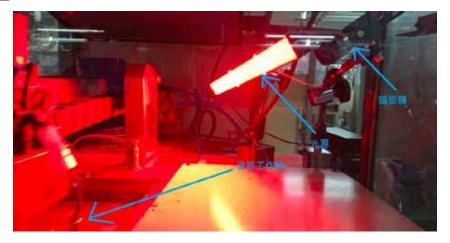
設備選用及安裝	
主機	DMV1000(亦適用 DMV2000)
攝影機	DMV-CD80GS
鏡頭	12mm 焦段
光源	背光
安裝距離	760 mm
FOV	300 mm x 225 mm

【檢測工具】


採用【斑點】功能進行檢測

【檢測要點】

油墨刮印時,刮刀邊緣兩側容易產生油墨不足的情形,利用 DMV 系統檢測該處油墨情況,即可控管印刷品質


檢測速度約在 160 ms 以內

【動作流程】

刮刀退至後方時·DMV 系統檢測印刷範圍是否存在油墨不足的情況。如檢出油墨不足·設備將觸發自動補墨系統,補足油墨量

導入 DMV 後的優點

透過機器視覺系統掌握油墨量,並在油墨不足時提前警告,通知設備自動補料, 有效避免後續因油墨不足導致印刷不良的情況

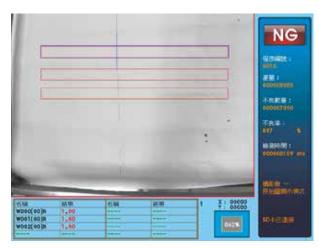
印刷

檢測應用說明

印刷薄膜刮傷檢測

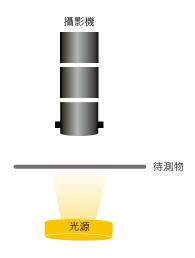
檢測印刷出的薄膜是否有刮傷情形 (如淺色刮痕)

設備選用及安裝	
主機	DMV1000(亦適用 DMV2000)
攝影機	DMV-CD80GS
鏡頭	6mm 焦段
光源	利用室內日光燈環境光即可· 不需要特別打光
安裝距離	450 mm
FOV	350 mm x 260 mm


【檢測工具】

採用【邊緣計數】功能,當機器視覺系統檢測出數量時,即表示薄膜有刮傷

【檢測要點】


- 由於刮傷處很淺,只用 1 個【邊緣計數】功能可能會產生漏檢。建議同時執行 3 個【邊緣計數】功能, 只要其中一處檢測出數量,即表示薄膜有刮傷
- 由於薄膜質地薄且為白色,建議採用深色背景以增加刮痕的對比度

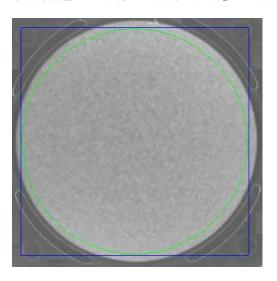
- 檢測速度約在 160 ms 以內
- DMV 系統可穩定檢出約 0.3 mm 以上的刮痕

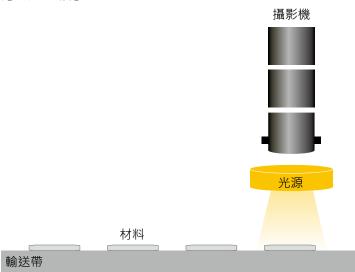
【動作流程】

當 DMV 系統即檢測出刮痕時,檢測結果會以 I/O 通訊傳送至上位控制器,請現場人員排除問題

導入 DMV 後的優點

薄膜的生產過程中,現場以人工進行印刷品質檢測速度慢、品質亦不穩定。藉由 DMV 系列可即早檢測出瑕疵,避免大量不良品產生的情形


印刷

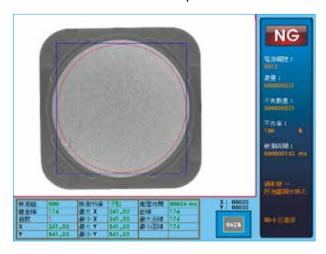


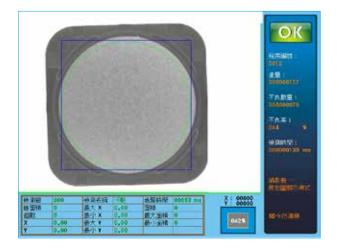
檢測應用說明

鐵件印刷品質檢測

檢測中間灰色圓圈印刷處是否有「黑點」、「白點」或「刮痕」

設備選用及安裝	
主機	DMV1000(亦適用 DMV2000)
攝影機	DMV-CD80GS
鏡頭	12mm 焦段 + 1.5mm 延伸環
光源	白色低角度白色環光
安裝距離	70 mm
FOV	30 mm x 22 mm


【檢測工具】


- 先採用【邊形比對】功能定位檢測品
- 再採用【汙點】功能·在選取的圓形檢測範圍中依照【邊形比對】的定位進行追隨。如有不均勻的影像變化· 即判定為汙點瑕疵

【檢測要點】

• 光源須採用低角度照明·較容易強調平面印刷上細微的瑕疵。搭配 **DMV** 系統中設定瑕疵檢測大小·即可滿足檢測需求

- 檢測時間約在 170 ms 以內
- DMV 系統可穩定檢出約 70µm 以上的瑕疵

【動作流程】

利用伺服馬達帶動滾珠螺桿進行送料及定位;待加工件進入檢測區時·DMV系統透過攝影機拍攝工件照片·並進行影像辨識·判讀工件是否為良品

導入 DMV 後的優點

一般人工辨識時,很難以肉眼準確檢出細小的髒汙瑕疵,且若為長時間作業,人員疲勞亦會影響判別的穩定性。DMV系統可自行定義需檢測的瑕疵尺寸,實現穩定、 高品質的檢測,同時避免人工作業標準不一的問題


醫療

檢測應用說明

藥瓶到期日確認

設備選用及安裝	
主機	DMV1000(亦適用 DMV2000)
攝影機	DMV-CD80GS
鏡頭	12mm 焦段
光源	紅色外同軸光
安裝距離	120 mm
FOV	50 mm x 38 mm

【檢測工具】

利用【邊形比對】功能定位特定字樣(如物件上的 LOT、EXP 字樣),再搭配【OCV】功能進行字元辨識

【檢測要點】

由於藥瓶使用雷射點狀字元標示,易產生字樣不一致的問題;為確保字元比對 (OCV) 的穩定性,同一個字元需註冊不同的字樣,提升 DMV 系統的辨識率

• 如下圖所示·DMV系統可成功判讀藥瓶上的到期日為 20181225

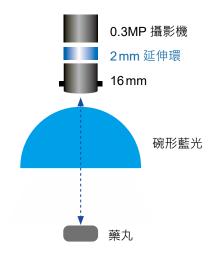
【動作流程】

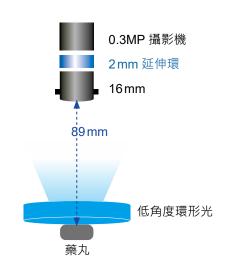
DMV 系統將從藥瓶上檢測出的字樣上傳至控制器·再由控制器判別到期日是否正確

導入 DMV 後的優點

可滿足打印標籤後自動檢測的需求

醫療


檢測應用說明


藥丸品質檢測

利用 DMV 系統檢測藥丸是否有汙點、外形 / 邊緣是否完整

設備選用及安裝			
主機	DMV2000		
攝影機 1	DMV-CM30GCL	攝影機 2	DMV-CM30GCL
鏡頭	16mm 焦段 + 2mm 延伸環	鏡頭	16mm 焦段 + 2mm 延伸環
光源	碗形藍光	光源	低角度環形光
安裝距離	89 mm	安裝距離	89 mm
FOV	30 mm x 23 mm	FOV	30 mm x 23 mm

【檢測工具】

- 先使用【邊行比對】功能定位藥丸
- 再採用【斑點】功能檢測藥丸上的汙點
- 再採用【邊緣計數】功能檢測藥丸週邊是否崩壞

【檢測要點】

- 使用兩支攝影機進行檢測:一支搭配碗形藍光檢測藥丸上的汙點,另一支搭配低角度環形光檢測藥丸外型、 邊緣是否崩壞
- DMV 系統檢測速度需控制在 72 ms 以內,達到每 8 小時檢測 400,000 顆藥丸的效能

【檢測結果】

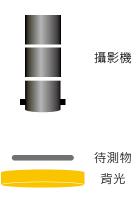
DMV 系統可檢測出藥丸上的汙點及損壞處,檢測時間約為 30 ms

【動作流程】

輸送帶上的藥丸傳送至檢測區時,感測器觸發 DMV2000 對藥丸進行檢測;若檢測合格則續流,不良品則淘汰

導入 DMV 後的優點

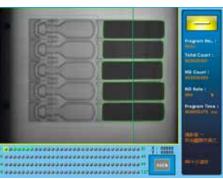
DMV2000 系列可解決人工漏檢的情況,減少不良品流出

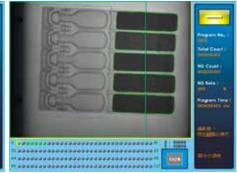

醫療

檢測應用說明

藥劑包裝標籤定位檢測

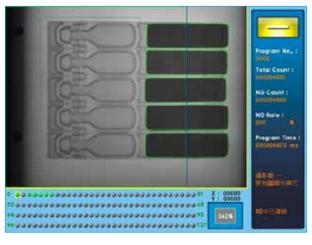

設備選用及安裝	
主機	DMV1000(亦適用 DMV2000)
攝影機	DMV-CD80GS
鏡頭	12mm 焦段
光源	背光
安裝距離	160 mm
FOV	100 mm x 75 mm

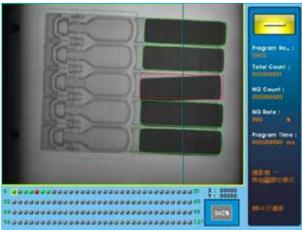

【檢測工具】


- 利用【邊形比對】功能定位5個透明藥劑罐
- 再採用 5 個【面積】功能檢測標籤是否定位

【檢測要點】

- DMV 系統可檢測出汙點及破損, 定位後,利用 5 個【面積】功能 檢測時間為 72 ms 以內
 - 測量標籤的黑色面積
- · 當藥劑擺放位置偏移, DMV 系統 可根據先前的定位同步校正藥劑的 位置





【檢測結果】

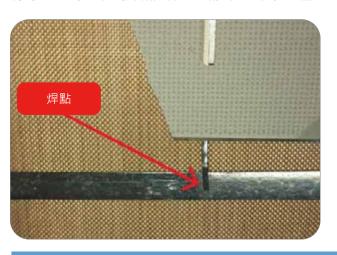
- 檢測速度約在 600 ms 以內
- 即使標籤偏移,DMV 系統仍可穩定檢出

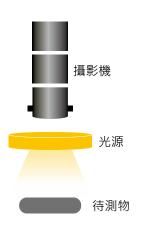
【動作流程】

以機構夾取物件至旋轉盤檢測

導入 DMV 後的優點

DMV 系統取代傳統人工檢測,大幅降低不良品流出率





檢測應用說明

太陽能模組焊點位置偵測

利用 DMV 系統偵測焊點座標,並輸出至上位控制器

設	着 撰	用	及安裝
H~ 1	, 13 ~ ·		

主機	DMV1000(亦適用 DMV2000)
攝影機	DMV-CD80GS
鏡頭	12mm 焦段
光源	上方白色環光
安裝距離	95 mm
FOV	40 mm x 30 mm

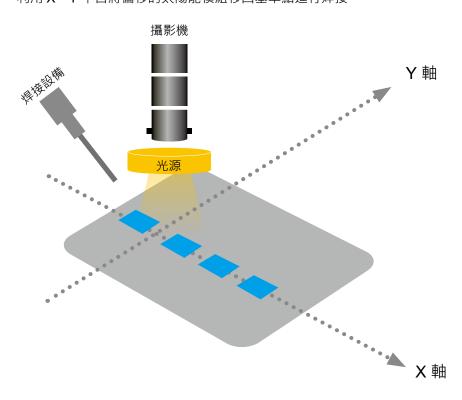
【檢測工具】

利用 2 個【邊緣位置】功能定位 X-Y 座標


【檢測要點】

- 利用【邊緣位置】功能先定位粗邊條的 Y 軸座標
- 再參考 Y 座標,定位細邊條的 X 座標

- 檢測速度約在 200ms 以內,定位精度可控制在 1mm 以內,滿足檢測細邊條 (寬度 2 mm)的需求
- 先定位粗邊條 Y 座標



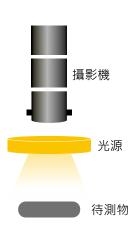
• 再參考粗邊條 Y 座標,定位細邊條 X 座標

【動作流程】

利用X、Y平台將偏移的太陽能模組移回基準點進行焊接

導入 DMV 後的優點

太陽能模組體積大·人工不易焊接;利用 DMV 系統輔助焊接·可避免焊接作業 危害人員健康



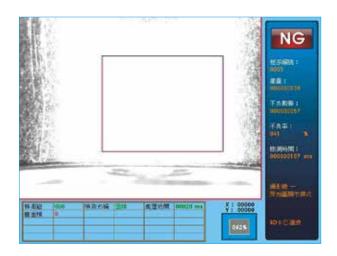
檢測應用說明

金屬件鉚釘檢測

設備選用及安裝

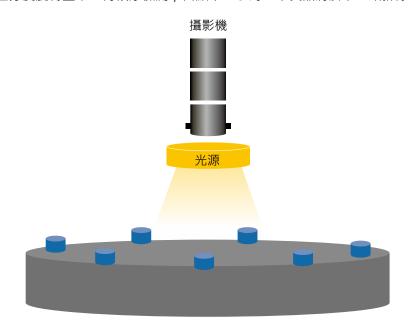
主機	DMV1000(亦適用 DMV2000)
攝影機	DMV-CD80GS
鏡頭	50 mm 焦段 + 10 mm 延伸環
光源	白色環形光源
安裝距離	180 mm
FOV	15 mm x 11 mm

【檢測工具】


利用【面積】功能檢測黑色像素、依此判定工件中是否有鉚釘

【檢測要點】

- 由於金屬反光性很強,檢測時須注意光源是否均勻照射
- 無鉚釘的工件在合適的照明角度下呈現大區域反白 · 有卯釘的工件會因光源反射而產生陰影 · DMV 系統利用 此差異檢測工件中有無鉚釘


- 檢測速度約在 150 ms 以內
- 因有無鉚釘的陰影變化差異很大,因此 DMV 系統可穩定檢測
- 當工件中有鉚釘時,黑色像素為 11153, 系統顯示為 OK

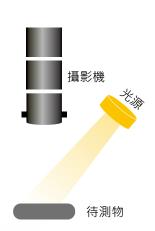
• 當工件中無鉚釘時,黑色像素為 0, 系統顯示為 NG

【動作流程】

震動盤將待測物送至分度旋轉盤中,再依序檢測;當顯示 NG 時,不良品將於下一站排除

導入 DMV 後的優點

本應用案例利用工件生產過程中會使用分度旋轉盤的特性,在其中一站架設 DMV 系統,即可穩定檢測材料品質。DMV 系統具備高速檢測效能,在產線中架設後不影響整體產能,實現高效穩定的機器視覺應用

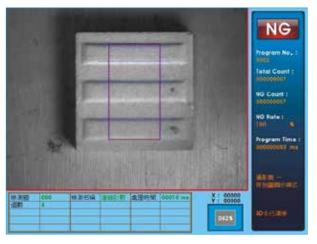


檢測應用說明

馬賽克磁磚正反面檢測

設備選用及安裝	
主機	DMV1000(亦適用 DMV2000)
攝影機	DMV-CD30GS
鏡頭	12mm 焦段
光源	6736 白色環形光源,以側打光方式照明
安裝距離	180 mm
FOV	75 mm x 56 mm

【檢測工具】


利用【邊緣計數】功能檢測磁磚正反面

【檢測要點】

馬賽克磁磚正面為光滑面·反面為凹凸紋路。DMV 系統利用此特性·檢測凹凸紋路產生的直線陰影數量·以判別磁磚正反面

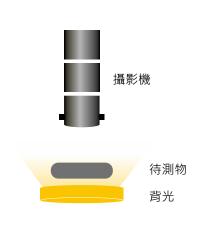
- 檢測速度約在 130 ms 以內
- 馬賽克磁磚的正反面差異明顯,故可穩定檢測
- 【邊緣計數】功能檢測值為 0,顯示為磁磚正面
- •【邊緣計數】功能檢測值大於 0 , 顯示為磁磚反面

【動作流程】

輸送帶移載磁磚至攝影機下方,感測器觸發 DMV 系統進行檢測,反面的磁磚會於下一站透過吹氣排除

導入 DMV 後的優點

馬賽克磁磚數量多、體積小、易產生粉塵;透過架設 DMV 系統,可快速且穩定篩 選磁磚,取代人工作業,避免粉塵對人體造成危害

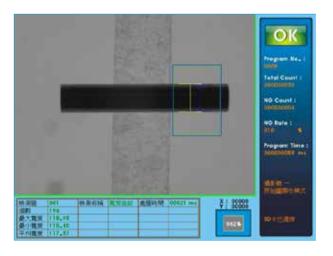


檢測應用說明

鐵件缺口方向檢測

設備選用及安裝	
主機	DMV1000(亦適用 DMV2000)
攝影機	DMV-CD30GS
鏡頭	12mm 焦段
光源	背光
安裝距離	90 mm
FOV	40 mm x 30 mm

【檢測工具】


- 利用 2 個【寬度追蹤】功能,分別檢測鐵管兩邊,寬度像素值較小的一邊為鐵管缺口處
- 再採用【計算機】功能判別鐵管的左右向

【檢測要點】

【寬度追蹤】功能可自動檢測出區塊範圍內的最小寬度,不需採用多個寬度量測工具即可滿足應用需求

- 檢測速度約在 120 ms 以內
- 對鐵管左側使用【寬度追蹤】功能·測量最小 寬度結果為 118.64 像素
- Program Ne. 1
 She Count:
 United State:
 Unit

• 對鐵管右側使用【寬度追蹤】功能‧測量最小寬度 結果為 110.40 像素。右側測得的數值較左側小‧ 顯示該鐵管缺口為右側

• 利用以上結果,【計算機】功能即可判斷缺口位於鐵管的左側/右側

【動作流程】

震動盤將待測物送至旋轉盤中·利用背光光源凸顯鐵管的邊緣輪廓·再透過正面攝影機高精度檢測鐵管缺口的位置

導入 DMV 後的優點

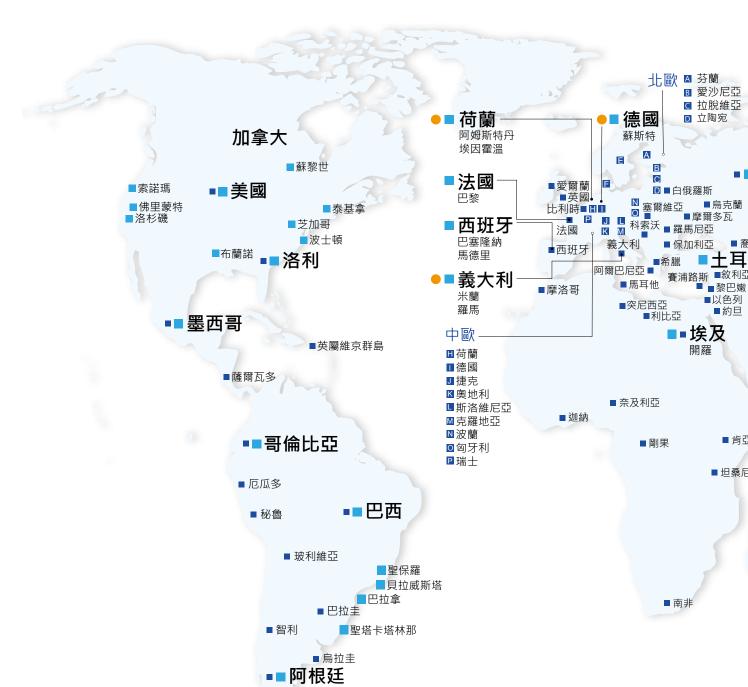
因鐵管缺口很小·一般儀器難以快速且精確判別; DMV 系統可高速且精準的檢測 鐵管缺口·同時也避免鐵管接觸儀器產生磨損

全球據點

亞洲

桃園研發中心 (黃金級綠建築)

桃園 (一廠)


台南研發中心 (鑽石級綠建築)

吳江廠及研發中心

上海分公司

■瑞典 ■丹麥

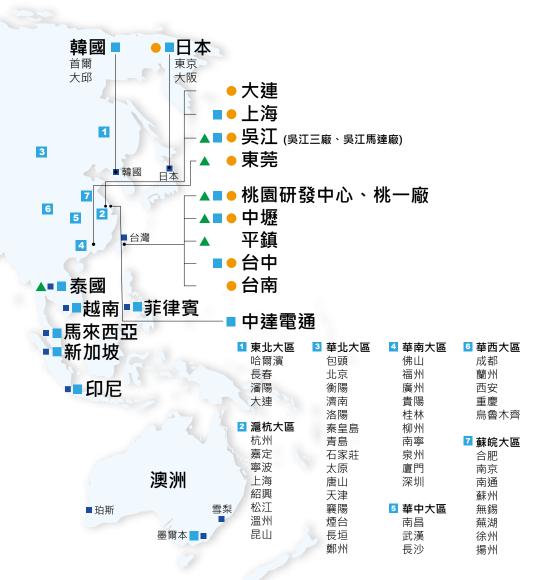
東京分公司

印度分公司

荷蘭分公司

歐洲

美國分公司


美洲

▲ 生產據點 8

分公司 112

●研發中心 13

■經銷商 909

台達電子工業股份有限公司

機電事業群

33068 桃園市桃園區興隆路 18 號

TEL: 886-3-3626301 FAX: 886-3-3716301

* 本型錄內容若有變更, 恕不另行通知